Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Nat Commun ; 15(1): 4083, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744825

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Acetyl-CoA Carboxylase , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Survival , Fatty Acids , Glucose , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Glucose/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fatty Acids/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , NADP/metabolism , Protein Biosynthesis , Phosphoproteins/metabolism , Phosphoproteins/genetics , Oxidative Stress , Cell Line, Tumor , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics
2.
Article En | MEDLINE | ID: mdl-38472594

PURPOSE: Recent evidence suggests that age-accumulated methylmalonic acid (MMA) promotes breast cancer progression in mice. This study aims to investigate the association between baseline serum MMA concentrations in patients with breast cancer and the development of subsequent distant metastases. METHODS: We included 32 patients with early Luminal B-like breast cancer (LumB, median age 62.4y) and 52 patients with early triple-negative breast cancer (TNBC, median age 50.5y) who developed distant metastases within 5 years. They were matched to an equal number of early breast cancer patients (median age 62.2y for LumB and 50.5y for TNBC) who did not develop distant metastases with at least 5 years of follow-up. RESULTS: Baseline serum MMA levels at breast cancer diagnosis showed a positive correlation with age (P < 0.001) and a negative correlation with renal function and vitamin B12 (all P < 0.02), but no statistical association was found with BMI or tumor stage (P > 0.6). Between matched pairs, no significant difference was observed in MMA levels, after adjusting for kidney function and age (P = 0.19). Additionally, in a mouse model, a significant decline in MMA levels was observed in the tumor-bearing group compared to the group without tumors before and after tumor establishment or at identical times for the control group (P = 0.03). CONCLUSION: Baseline serum MMA levels in patients with breast cancer are not correlated with secondary distant metastasis. Evidence in the mouse model suggests that the presence of a tumor perturbates MMA levels.

3.
Geroscience ; 46(2): 1489-1498, 2024 Apr.
Article En | MEDLINE | ID: mdl-37632634

Methylmalonic acid (MMA), a by-product of propionate metabolism, is known to increase with age. This study investigates the potential of serum MMA concentrations as a biomarker for age-related clinical frailty in older patients with breast cancer. One hundred nineteen patients ≥ 70 years old with early-stage breast cancer were included (median age 76 years). G8 screening, full geriatric assessment, clinical parameters (i.e., estimated glomerular filtration rate (eGFR) and body mass index (BMI)), and serum sample collection were collected at breast cancer diagnosis before any therapy was administered. MMA concentrations were measured via liquid chromatography with tandem mass spectrometry. MMA concentrations significantly increased with age and eGFR (all P < 0.001) in this older population. The group with an abnormal G8 (≤ 14, 51% of patients) had significantly higher MMA levels than the group with normal G8 (> 14, 49%): 260 nmol/L vs. 188 nmol/L, respectively (P = 0.0004), even after correcting for age and eGFR (P = 0.001). Furthermore, in the detailed assessment, MMA concentrations correlated most with mobility (Eastern Cooperative Oncology Group (ECOG) Performance Status and Activities of Daily Living (ADL) tools, all P ≤ 0.02), comorbidity (Charlson Comorbidity Index (CCI) tool, P = 0.005), and polypharmacy (P < 0.001), whereas no significant associations were noted for instrumental ADL (IADL), Mini-Mental State Examination (MMSE), Geriatric Depression Scale-15 (GDS15), Mini Nutritional Assessment-Short Form (MNA-SF), and pain (all P > 0.1). In addition, our results showed that higher MMA levels correlate with poor overall survival in breast cancer patients (P = 0.003). Elevated serum MMA concentrations at initial diagnosis are significantly associated, not only with age but also independently with clinical frailty, suggesting a possible influence of MMA on clinical frailty in older patients with early-stage breast cancer.


Breast Neoplasms , Frailty , Humans , Aged , Female , Frailty/diagnosis , Frailty/complications , Breast Neoplasms/diagnosis , Methylmalonic Acid , Activities of Daily Living , Comorbidity
4.
Plant J ; 116(1): 7-22, 2023 Oct.
Article En | MEDLINE | ID: mdl-37608631

Strigolactones are a class of phytohormones that are involved in many different plant developmental processes, including the rhizobium-legume nodule symbiosis. Although both positive and negative effects of strigolactones on the number of nodules have been reported, the influence of strigolactones on nodule development is still unknown. Here, by means of the ramosus (rms) mutants of Pisum sativum (pea) cv Terese, we investigated the impact of strigolactone biosynthesis (rms1 and rms5) and signaling (rms3 and rms4) mutants on nodule growth. The rms mutants had more red, that is, functional, and larger nodules than the wild-type plants. Additionally, the increased nitrogen fixation and senescence zones with consequently reduced meristematic and infection zones indicated that the rms nodules developed faster than the wild-type nodules. An enhanced expression of the nodule zone-specific molecular markers for meristem activity and senescence supported the enlarged, fast maturing nodules. Interestingly, the master nodulation regulator, NODULE INCEPTION, NIN, was strongly induced in nodules of all rms mutants but not prior to inoculation. Determination of sugar levels with both bulk and spatial metabolomics in roots and nodules, respectively, hints at slightly increased malic acid levels early during nodule primordia formation and reduced sugar levels at later stages, possibly the consequence of an increased carbon usage of the enlarged nodules, contributing to the enhanced senescence. Taken together, these results suggest that strigolactones regulate the development of nodules, which is probably mediated through NIN, and available plant sugars.


Pisum sativum , Plant Growth Regulators , Pisum sativum/genetics , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Nitrogen Fixation/physiology , Symbiosis/physiology , Sugars/metabolism , Root Nodules, Plant/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
6.
Curr Opin Chem Biol ; 76: 102362, 2023 10.
Article En | MEDLINE | ID: mdl-37413787

Mass spectrometry imaging (MSI) is an emerging technology in cancer metabolomics. Desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) MSI are complementary techniques to identify hundreds of metabolites in space with close to single-cell resolution. This technology leap enables research focusing on tumor heterogeneity, cancer cell plasticity, and the communication signals between cancer and stromal cells in the tumor microenvironment (TME). Currently, unprecedented knowledge is generated using spatial metabolomics in fundamental cancer research. Yet, also translational applications are emerging, including the assessment of spatial drug distribution in organs and tumors. Moreover, clinical research investigates the use of spatial metabolomics as a rapid pathology tool during cancer surgeries. Here, we summarize MSI applications, the knowledge gained by this technology in space, future directions, and developments needed.


Metabolomics , Neoplasms , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Metabolomics/methods , Proteomics , Spectrometry, Mass, Electrospray Ionization/methods
7.
iScience ; 26(6): 106899, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37305702

Pancreatic ductal adenocarcinoma (PDAC) remains one of the human cancers with the poorest prognosis. Interestingly, we found that mitochondrial respiration in primary human PDAC cells depends mainly on the fatty acid oxidation (FAO) to meet basic energy requirements. Therefore, we treated PDAC cells with perhexiline, a well-recognized FAO inhibitor used in cardiac diseases. Some PDAC cells respond efficiently to perhexiline, which acts synergistically with chemotherapy (gemcitabine) in vitro and in two xenografts in vivo. Importantly, perhexiline in combination with gemcitabine induces complete tumor regression in one PDAC xenograft. Mechanistically, this co-treatment causes energy and oxidative stress promoting apoptosis but does not exert inhibition of FAO. Yet, our molecular analysis indicates that the carnitine palmitoyltransferase 1C (CPT1C) isoform is a key player in the response to perhexiline and that patients with high CPT1C expression have better prognosis. Our study reveals that repurposing perhexiline in combination with chemotherapy is a promising approach to treat PDAC.

8.
J Exp Clin Cancer Res ; 42(1): 92, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37072838

BACKGROUND: One of the key limitations of targeted cancer therapies is the rapid onset of therapy resistance. Taking BRAF-mutant melanoma as paradigm, we previously identified the lipogenic regulator SREBP-1 as a central mediator of resistance to MAPK-targeted therapy. Reasoning that lipogenesis-mediated alterations in membrane lipid poly-unsaturation lie at the basis of therapy resistance, we targeted fatty acid synthase (FASN) as key player in this pathway to evoke an exquisite vulnerability to clinical inducers of reactive oxygen species (ROS), thereby rationalizing a novel clinically actionable combination therapy to overcome therapy resistance. METHODS: Using gene expression analysis and mass spectrometry-based lipidomics of BRAF-mutant melanoma cell lines, melanoma PDX and clinical data sets, we explored the association of FASN expression with membrane lipid poly-unsaturation and therapy-resistance. Next, we treated therapy-resistant models with a preclinical FASN inhibitor TVB-3664 and a panel of ROS inducers and performed ROS analysis, lipid peroxidation tests and real-time cell proliferation assays. Finally, we explored the combination of MAPK inhibitors, TVB-3664 and arsenic trioxide (ATO, as a clinically used ROS-inducer) in Mel006 BRAF mutant PDX as a gold model of therapy resistance and assessed the effect on tumor growth, survival and systemic toxicity. RESULTS: We found that FASN expression is consistently increased upon the onset of therapy resistance in clinical melanoma samples, in cell lines and in Mel006 PDX and is associated with decreased lipid poly-unsaturation. Forcing lipid poly-unsaturation in therapy-resistant models by combining MAPK inhibition with FASN inhibition attenuated cell proliferation and rendered cells exquisitely sensitive to a host of ROS inducers. In particular, the triple combination of MAPK inhibition, FASN inhibition, and the clinical ROS-inducing compound ATO dramatically increased survival of Mel006 PDX models from 15 to 72% with no associated signs of toxicity. CONCLUSIONS: We conclude that under MAPK inhibition the direct pharmacological inhibition of FASN evokes an exquisite vulnerability to inducers of ROS by increasing membrane lipid poly-unsaturation. The exploitation of this vulnerability by combining MAPK and/or FASN inhibitors with inducers of ROS greatly delays the onset of therapy resistance and increases survival. Our work identifies a clinically actionable combinatorial treatment for therapy-resistant cancer.


Melanoma , Proto-Oncogene Proteins B-raf , Humans , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins B-raf/genetics , Membrane Lipids/pharmacology , Membrane Lipids/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm
9.
Elife ; 122023 03 15.
Article En | MEDLINE | ID: mdl-36920797

Chronically high blood glucose (hyperglycemia) leads to diabetes and fatty liver disease. Obesity is a major risk factor for hyperglycemia, but the underlying mechanism is unknown. Here, we show that a high-fat diet (HFD) in mice causes early loss of expression of the glycolytic enzyme Hexokinase 2 (HK2) specifically in adipose tissue. Adipose-specific knockout of Hk2 reduced glucose disposal and lipogenesis and enhanced fatty acid release in adipose tissue. In a non-cell-autonomous manner, Hk2 knockout also promoted glucose production in liver. Furthermore, we observed reduced hexokinase activity in adipose tissue of obese and diabetic patients, and identified a loss-of-function mutation in the hk2 gene of naturally hyperglycemic Mexican cavefish. Mechanistically, HFD in mice led to loss of HK2 by inhibiting translation of Hk2 mRNA. Our findings identify adipose HK2 as a critical mediator of local and systemic glucose homeostasis, and suggest that obesity-induced loss of adipose HK2 is an evolutionarily conserved mechanism for the development of selective insulin resistance and thereby hyperglycemia.


Hyperglycemia , Insulin Resistance , Animals , Mice , Hexokinase/genetics , Hexokinase/metabolism , Obesity/metabolism , Hyperglycemia/metabolism , Glucose/metabolism , Adipose Tissue/metabolism , Diet, High-Fat , Mice, Inbred C57BL
10.
Nat Cancer ; 4(3): 344-364, 2023 03.
Article En | MEDLINE | ID: mdl-36732635

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.


Lysine Acetyltransferases , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Acetylation , Acetyl Coenzyme A/metabolism , Palmitates , Lysine Acetyltransferases/metabolism
11.
Nat Immunol ; 24(3): 452-462, 2023 03.
Article En | MEDLINE | ID: mdl-36823405

Exposure of lipopolysaccharide triggers macrophage pro-inflammatory polarization accompanied by metabolic reprogramming, characterized by elevated aerobic glycolysis and a broken tricarboxylic acid cycle. However, in contrast to lipopolysaccharide, CD40 signal is able to drive pro-inflammatory and anti-tumorigenic polarization by some yet undefined metabolic programming. Here we show that CD40 activation triggers fatty acid oxidation (FAO) and glutamine metabolism to promote ATP citrate lyase-dependent epigenetic reprogramming of pro-inflammatory genes and anti-tumorigenic phenotypes in macrophages. Mechanistically, glutamine usage reinforces FAO-induced pro-inflammatory and anti-tumorigenic activation by fine-tuning the NAD+/NADH ratio via glutamine-to-lactate conversion. Genetic ablation of important metabolic enzymes involved in CD40-mediated metabolic reprogramming abolishes agonistic anti-CD40-induced antitumor responses and reeducation of tumor-associated macrophages. Together these data show that metabolic reprogramming, which includes FAO and glutamine metabolism, controls the activation of pro-inflammatory and anti-tumorigenic polarization, and highlight a therapeutic potential of metabolic preconditioning of tumor-associated macrophages before agonistic anti-CD40 treatments.


Fatty Acids , Glutamine , Glutamine/metabolism , Fatty Acids/metabolism , Lipopolysaccharides/metabolism , Glycolysis , Macrophages/metabolism , Macrophage Activation
12.
Mol Cancer ; 22(1): 17, 2023 01 24.
Article En | MEDLINE | ID: mdl-36691028

BACKGROUND: Colorectal cancer liver metastases (CRCLM) are associated with a poor prognosis, reflected by a five-year survival rate of 14%. Anti-angiogenic therapy through anti-VEGF antibody administration is one of the limited therapies available. However, only a subgroup of metastases uses sprouting angiogenesis to secure their nutrients and oxygen supply, while others rely on vessel co-option (VCO). The distinct mode of vascularization is reflected by specific histopathological growth patterns (HGPs), which have proven prognostic and predictive significance. Nevertheless, their molecular mechanisms are poorly understood. METHODS: We evaluated CRCLM from 225 patients regarding their HGP and clinical data. Moreover, we performed spatial (21,804 spots) and single-cell (22,419 cells) RNA sequencing analyses to explore molecular differences in detail, further validated in vitro through immunohistochemical analysis and patient-derived organoid cultures. RESULTS: We detected specific metabolic alterations and a signature of WNT signalling activation in metastatic cancer cells related to the VCO phenotype. Importantly, in the corresponding healthy liver of CRCLM displaying sprouting angiogenesis, we identified a predominantly expressed capillary subtype of endothelial cells, which could be further explored as a possible predictor for HGP relying on sprouting angiogenesis. CONCLUSION: These findings may prove to be novel therapeutic targets to the treatment of CRCLM, in special the ones relying on VCO.


Colorectal Neoplasms , Liver Neoplasms , Humans , Endothelial Cells/pathology , Liver Neoplasms/genetics , Neovascularization, Pathologic/pathology , Colorectal Neoplasms/pathology
13.
Science ; 379(6632): eabn4705, 2023 02 10.
Article En | MEDLINE | ID: mdl-36705539

Neuronal development in the human cerebral cortex is considerably prolonged compared with that of other mammals. We explored whether mitochondria influence the species-specific timing of cortical neuron maturation. By comparing human and mouse cortical neuronal maturation at high temporal and cell resolution, we found a slower mitochondria development in human cortical neurons compared with that in the mouse, together with lower mitochondria metabolic activity, particularly that of oxidative phosphorylation. Stimulation of mitochondria metabolism in human neurons resulted in accelerated development in vitro and in vivo, leading to maturation of cells weeks ahead of time, whereas its inhibition in mouse neurons led to decreased rates of maturation. Mitochondria are thus important regulators of the pace of neuronal development underlying human-specific brain neoteny.


Mitochondria , Neurogenesis , Neurons , Animals , Humans , Mice , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Energy Metabolism , Mitochondria/metabolism , Neurons/metabolism
14.
Cell Rep ; 41(7): 111639, 2022 11 15.
Article En | MEDLINE | ID: mdl-36384124

T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively transferred CD8+ T cells in a mouse melanoma model. We thus provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of CD8+ T cell differentiation.


CD8-Positive T-Lymphocytes , Melanoma , Mice , Animals , Single-Cell Analysis , Lymphocyte Activation , Cell Differentiation , Melanoma/metabolism , Disease Models, Animal
16.
Nat Commun ; 13(1): 4578, 2022 08 05.
Article En | MEDLINE | ID: mdl-35931688

Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.


Ovarian Neoplasms , Platinum , Carcinoma, Ovarian Epithelial/drug therapy , Drug Resistance, Neoplasm , Female , Humans , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/pharmacology , Platinum/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/pharmacology , Serine/pharmacology
17.
Nature ; 605(7911): 747-753, 2022 05.
Article En | MEDLINE | ID: mdl-35585241

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Breast Neoplasms , Neoplasm Metastasis , Phosphoglycerate Dehydrogenase , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Female , Gene Silencing , Humans , Mice , Phosphoglycerate Dehydrogenase/genetics , Serine/metabolism
18.
Cell Rep ; 37(13): 110171, 2021 12 28.
Article En | MEDLINE | ID: mdl-34965415

Macrophages are often prominently present in the tumor microenvironment, where distinct macrophage populations can differentially affect tumor progression. Although metabolism influences macrophage function, studies on the metabolic characteristics of ex vivo tumor-associated macrophage (TAM) subsets are rather limited. Using transcriptomic and metabolic analyses, we now reveal that pro-inflammatory major histocompatibility complex (MHC)-IIhi TAMs display a hampered tricarboxylic acid (TCA) cycle, while reparative MHC-IIlo TAMs show higher oxidative and glycolytic metabolism. Although both TAM subsets rapidly exchange lactate in high-lactate conditions, only MHC-IIlo TAMs use lactate as an additional carbon source. Accordingly, lactate supports the oxidative metabolism in MHC-IIlo TAMs, while it decreases the metabolic activity of MHC-IIhi TAMs. Lactate subtly affects the transcriptome of MHC-IIlo TAMs, increases L-arginine metabolism, and enhances the T cell suppressive capacity of these TAMs. Overall, our data uncover the metabolic intricacies of distinct TAM subsets and identify lactate as a carbon source and metabolic and functional regulator of TAMs.


Carcinoma, Lewis Lung/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Lactates/metabolism , Lung Neoplasms/pathology , T-Lymphocytes/immunology , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Glycolysis , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Major Histocompatibility Complex , Metabolome , Mice , Mice, Inbred C57BL , Transcriptome
19.
Cell Rep ; 37(8): 110056, 2021 11 23.
Article En | MEDLINE | ID: mdl-34818551

Statins are among the most commonly prescribed drugs, and around every fourth person above the age of 40 is on statin medication. Therefore, it is of utmost clinical importance to understand the effect of statins on cancer cell plasticity and its consequences to not only patients with cancer but also patients who are on statins. Here, we find that statins induce a partial epithelial-to-mesenchymal transition (EMT) phenotype in cancer cells of solid tumors. Using a comprehensive STRING network analysis of transcriptome, proteome, and phosphoproteome data combined with multiple mechanistic in vitro and functional in vivo analyses, we demonstrate that statins reduce cellular plasticity by enforcing a mesenchymal-like cell state that increases metastatic seeding ability on one side but reduces the formation of (secondary) tumors on the other due to heterogeneous treatment responses. Taken together, we provide a thorough mechanistic overview of the consequences of statin use for each step of cancer development, progression, and metastasis.


Cell Plasticity/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Neoplasm Metastasis , Neoplastic Stem Cells/pathology
20.
Free Radic Biol Med ; 176: 34-45, 2021 11 20.
Article En | MEDLINE | ID: mdl-34520823

Cancer cells frequently lack nutrients like glucose, due to insufficient vascular networks. Mitochondrial phosphoenolpyruvate carboxykinase, PCK2, has recently been found to mediate partial gluconeogenesis and hence anabolic metabolism in glucose starved cancer cells. Here we show that PCK2 acts as a regulator of mitochondrial respiration and maintains the redox balance in nutrient-deprived human lung cancer cells. PCK2 silencing increased the abundance and interconversion of tricarboxylic acid (TCA) cycle intermediates, augmented mitochondrial respiration and enhanced glutathione oxidation under glucose and serum starvation, in a PCK2 re-expression reversible manner. Moreover, enhancing the TCA cycle by PCK2 inhibition severely reduced colony formation of lung cancer cells under starvation. As a conclusion, PCK2 contributes to maintaining a reduced glutathione pool in starved cancer cells besides mediating the biosynthesis of gluconeogenic/glycolytic intermediates. The study sheds light on adaptive responses in cancer cells to nutrient deprivation and shows that PCK2 confers protection against respiration-induced oxidative stress.


Lung Neoplasms , Gluconeogenesis , Humans , Lung Neoplasms/genetics , Oxidation-Reduction , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Respiration
...